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Explicit Nearly Optimal Linear Rational 
Approximation with Preassigned Poles 

By Frank Stenger* 

Abstract. This paper gives explicit rational functions for interpolating and approximating 
functions on the intervals [-1,1], [0, oc], and [-oc, oc]. The rational functions are linear in the 
functions to be approximated, and they have preassigned poles. The error of approximation of 
these rationals is nearly as small as the error of best rational approximation with numerator 
and denominator polynomials of the same degrees. Regions of analyticity are described, which 
make it possible to tell a priori the accuracy which we can expect from this type of rational 
approximation. 

1. Introduction and Summary. In this paper we attempt to give a constructive, 
affirmative answer to each of the following questions. 

1. Given a function f and an interval I, is it possible to tell a priori whether or 
not one can accurately approximate f via a low-degree rational function? 

2. Can such a rational function be easily constructed explicitly, so that one 
encounters no poles on the interval of approximation? 

3. Can one use the Thiele algorithm to construct or evaluate this rational function? 
4. Can one tell a priori when we can expect the Thiele algorithm, the --algorithm, 

or the Pade method to produce an accurate low-degree rational approximation? 
5. Does the error of this rational function compare favorably with the error of the 

best possible rational approximation of the same degree? 
Although we cannot give an affirmative answer to the above questions in all cases, 

we shall describe classes of analytic functions which house nearly all of the cases 
encountered by the author in applications, and for which the answer to each of the 
above questions is " Yes". 

We shall develop a class of rational approximations for interpolation over [-1, 1], 

[0, x], and [-x, oc]. These rational approximations share many of the features of 
SINC methods summarized in [23]. The interpolation points of these rationals are 
the same as the SINC interpolation points, and the classes of functions which 

low-degree rationals approximate accurately are the same as the classes which the 

SINC functions approximate accurately. 
Indeed, the error bounds for, e.g., approximation on [-1, 1] of functions analytic 

on the unit disc are the same as the SINC bounds, i.e., rationals have the same 

optimality properties as SINC methods. In using rationals instead of SINC func- 

tions, we lose many of the simple relations that SINC functions satisfy, such as 
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orthogonality, and ease of getting other formulas, such as quadrature, approxima- 
tions of transforms, approximations of derivatives, methods of solving differential 
equations, etc. However, the well-known rational function algorithms of Thiele [29] 
(the p-algorithm), Pade [17], Shanks [21] and Wynn [31] (the --algorithm) all share 
simple methods of prediction which are at this time not known for the SINC 
methods. This paper provides an understanding in that it enables us to tell a priori 
when we can expect these algorithms to work effectively. 

The spaces of functions for which the rationals provide accurate approximations 
are described precisely in Section 2 of the paper. One such space consists, roughly, of 
functions analytic on an interval with possible singularities at end-points of the 
interval, such that the functions are of class Lip, (a > 0) on the closed interval. One 
encounters such functions in nearly all cases in applications. 

The rational approximations of this paper have the following additional features. 
(a) There are no poles on the interval of approximation. 
(b) The rational functions are linear in f, the function that is being approximated. 
(c) They are nearly optimal. More precisely, we prove the following result: 

THEOREM 1.1. Let 1 < p < x, let p' = p/( p - 1), let U denote the unit disc in the 
complex plane, let g be in the Hardy space Hp(U), and let f(z) = (1 z 2)g(z). Let 

P,, denote the space of polynomials of degree n and set 

inf ( sup f~~x) -t(x) (1.1) AN= sup inf (sup (X)' 
geHP(U) IIgIIP=1 /eP2N+2,oEP2N+l -1,X<1 

where jIgIIP denotes the usual norm in Hp(U). Then there exist positive constants 
C1, C2, and No, depending only on p such that for all N > No, 

(1.2) CN -lexpf -7T(2N/pf)112) <1 8N <1 C 2 N/2exp -T( N1(2 p1)) 
1/2 

In a recent very interesting paper, Burchard and Hollig [5] obtained essentially the 
same upper and lower bounds for the linear n-width of approximation in the same 
space. One may deduce from their results, moreover, that the constant in the 
exponent on the right-hand side of (1.2) is best possible for any rationals that are a 
linear combination of 2N + 1 values of f. The rationals which we shall derive in this 
paper are of the form i/a in (1.1) and they approximate f on [-1,1] to within an 
error bounded by the right-hand side of (1.2). 

A typical approximation result of the present paper is the following: 

THEOREM 1.2. Let f and g satisfy the conditions of Theorem 1.1, let N be a positive 
integer, and define h, zj and B(z) by 

(1.3) h = 7r [ p /(2N)] 

ejh _1 N z - z 

(1-4) Zi eeh + 
B z) = (I - 

2 
) 

8Zj 

Then 
N f (zj) B(x) ( [N]1/2~ 

(1.5) max f(x)- A - < C2N/(2P)expjT [ ] 

where C2 depends only on p. 
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Due to their simplicity of construction and approximation properties, the rational 
function approximations of this paper play a similar role as the interpolation 
polynomials obtained by interpolation at the zeros of the Chebyshev polynomials 
play for polynomial approximation. In order to describe this role effectively, we 
return first to the case of Fourier series. 

Let R > 1, and let AR denote the annular region in the complex plane C, 
AR = (w E C: R-1 < jwI < R}, let F be analytic in AR, and let c. be determined 
from 

(L6) ~~~1 
2 N 2k7T (1.6) C = 2N l E F(exp[iOkl] exp[iokI); k 2N + 1 

Then 

N 

(1.7) max F(e'6) - E cje = O(R N). 
0 < < 7Tj=-N 

The bound on the right-hand side of (1.7) is best possible with regard to order, in 
that the number R cannot be replaced by a larger positive number, regardless of how 
the cX are chosen. 

In (1.7) we now consider only those functions F for which F(w) = F(1/w) for all 
w in A R. We can then obtain a cosine polynomial approximation to F on the unit 
circle. The mapping 

(1.8) Z = (w + 1/w) 

transforms the annulus AR onto the ellipse ER with foci at z = + 1 and sum of 
semiaxes equal to R. Conversely, if f(z) is analytic and uniformly bounded in ER 

then we can use (1.8) to get a new function F(w) analytic in AR with Fourier series 
expansion F(e') -k= _ Ckeik6, and where ck = Ck for all integers k. If TN(x) = 

cos(NO), where x = cosO, and Xk = cost(2k - 1)7/(2N)}, then 

(1.9) max kX 1 (x - Xk)TN (x) = O(RN), 

where once again, the R in the O(R -N) bound on the right-hand side cannot be 
replaced by a larger number, regardless of how a polynomial of degree N - 1 is 
chosen to approximate f on [-1,1]. Indeed, Powell [19] has shown that the left-hand 
side of (1.9) is at most 4 times as large as the error of best "minimax" polynomial 
approximation for N at most 20, and at most 5 times as large for N up to 100. 

Hence, instead of finding the polynomial which best approximates f on [-1,1], it 
is much easier to use the Chebyshev polynomial for which the interpolation points 
Xk are known explicitly to get an approximation which is nearly as good. The 
rational functions of this paper share this feature. 

Notice that for the case of polynomial approximation above, we required a 
knowledge of a region of analyticity of f, a property which we can usually determine 
a priori in applications. Once we have identified such an ellipse ER (resp. an annulus 
AR) we can be certain that polynomial (resp. Fourier polynomial) approximation 
will work very well on [-1, 1] (resp. on [0, 27T]). From the point of view of 
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approximation in applications, we can thus identify functions analytic in ER (resp. 
A R) with polynomials (resp. Fourier polynomials), since they can be very accurately 
approximated with polynomials (resp. Fourier polynomials) of low degree. 

Unfortunately, there is a drastic change in the rate of convergence of polynomial 
approximation in the case when the function to be approximated has a singularity 
on the interval of approximation, a situation often encountered in applications. For 
example, if 0 < a < 1, we have 

(1 .10) na~x~1 |(1 
- 

2) -pN(X) I > 
N 2aG, 

where PN(X) is any polynomial of degree N in x and C is a positive constant 
independent of N. If a = I we would have to take N > 105 to get three places of 
accuracy. 

While for practical purposes functions with singularities on the interval of 
approximation cannot be identified with polynomials, there is, nevertheless, a class 
of functions with singularities on the interval of approximation, which we describe in 
this paper, and which lends itself to accurate rational approximation. Such a class 
includes the functions which we can accurately approximate with polynomials and 
for practical purposes, we can identify this class with rational functions. For 
example, by Theorem 1.2 above, given an integer N > 0, there exists a rational 
function P2N+2(X)/q2N?1(X) with P2N?2 of degree 2N + 2 in x and q2N+l of 
degree 2N + 1 in x, such that 

(I P2N+2(x) /2 (I aN\1/21 
(1 .11) max (1 - X2) - P2N2 (X) | aexp/ - 2I -1 ~X <1 q2N+l(x) LveP-T )f 

We remark that by identifying classes of functions which can be approximated 
accurately by rational functions, we are identifying classes of functions for which we 
can expect (say) the Thiele algorithm to work well, provided that the interpolation 
points are suitably chosen. We shall later in this paper illustrate this also for the case 
of the E-algorithm and the Pade method. Thus we are able to replace the intuitive 
feeling upon which scientists base their decision to use rational functions by a more 
deterministic approach. For example, we would be able to tell a priori that the Pade 
method used in [3] may be expected to be accurate. 

Another practically important use of rational functions is in analytic continuation. 
For sake of illustration, let us momentarily return to the class of functions analytic 
and bounded in the ellipse ER described above. Let us assume that f is known on 

[-I, 1], and that we want to evaluate f at the point 2 + 4(R + 1/R) in the ellipse. 
This can be done by means of the polynomial in (1.9), the rate of convergence of the 
error to zero being O(r N) where r = {(a + 1)/2 + J[a +(a2 - 3)/4] }/R, a = 

(R + 1/R)/2. On the other hand, if PN(X) is any polynomial approximation to 
f(x) = C + (I - X2)a on [- 4, 4] and we want to approximate f(1) = c by evaluat- 
ing PN(1), then we may expect (1) - pn(1)] to converge to zero very slowly, 
indeed, too slowly to be of any practical value. Since, however, we may identify 
f(x) = c + (1 - X2)a with a rational function for practical purposes, we can 
accurately evaluate f (1) via a rational function by using values of x on [- 4, 4 ] only. 
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As a more sophisticated example, let u = u(x, y) be harmonic in the right 
halfplane, and assume that u(O+, y) is of class Lip. (a > 0) on a neighborhood of 
y = 0. It follows then that u(x, 0) is analytic and bounded on a sector with vertex at 
the origin, and of class Lipa on [0, A], where A > 1 is arbitrary. That is, for practical 
purposes, we may identify u(x, 0) with a rational function, and we can accurately 
approximate u(O, 0) via a low-degree rational function, by using values of u(x, 0) on, 
e.g., the interval [1, A]. 

In the cases when the condition of accurate approximation are satisfied, it is thus 
possible to do accurate analytic continuation all the way to the boundary of 
analyticity, via a relatively low-degree rational function. 

The Lip, property of the function to be approximated is important from the point 
of view of applications; if f approaches zero too slowly in a neighborhood of a 
singularity, then it is necessary to choose the degree of the rational function to be 
very large, in order to achieve a desired accuracy. For example, for rational 
approximation on [0, 1], if f(x) - f(1) = c/[-log(1 - x)]a as x -- 1-, then it is just 
as difficult to approximate f on [0,1] by a rational function as it is to approximate 
(1 -X2) on [-1, 1] by a polynomial (see also Henrici [11, pp. 53-54]). We remark, 
however, that this difficulty can often be remedied by means of a transformation. 
For example, if we set x = 1 - exp[-1/z], we get f(1 - exp[-1/z]) - f(l) = cza, 
z -O 0, and we can now approximate the new function of z defined on the interval 
[0, oo] by a rational function. 

We mention that a rational function of the same degree as that in (1.5) for 
approximating f on [-1,1] was previously constructed by the author [24], and 
moreover, the error bound in [24] is the same as that on the right-hand side of (1.5). 
However, whereas the interpolation points in [24] are the points (see also [6]) 

(1.12) wj = k1/2sn[(2j - 1)K/(2N); kI , 

the evaluation of the wj is more difficult than the evaluation of the zj in (1.4). 
The same points z; defined in (1.4) were also used by Peaceman and Rachford 

[18] to approximate the points w; in (1.12) in their alternating direction method for 
obtaining approximate solutions to parabolic and elliptic partial differential equa- 
tions. 

For many problems of rational approximation one does not have analyticity in the 
unit disc U, but rather in a smaller region D3 (see Figure 2.2 in Section 2), and we 
have therefore also considered this case. Although our error bounds for this case are 
not as small as the SINC bounds, we believe that the errors of the rationals of this 
paper do in fact have the same bounds as the corresponding SINC errors, and we 
therefore expect that the bounds of this paper may be improved for the case when 
O < d < 7r/2. 

Notice that if N is replaced by 4N in the rational function of (1.5) then the 2jth 
interpolation point in the "4N"-rational is the same as the jth point of the 
"N "-rational, and that the "4N "-rational has roughly twice as many correct 
significant figures of accuracy as the "N "-rational. This result is of practical value, 
particularly when the user is unable to determine a region D of analyticity. 

Let us now briefly describe the layout of the paper. 
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In Section 2 we give precise statements and proofs of the results (a), (b) and (c) 
stated at the beginning of this section. These proofs would ordinarily be lengthy, and 
for this reason some of the details are carried out in Appendices A and B. 

In Section 3 we illustrate connections of the results with the well-known ap- 
proximation algorithms, the Thiele, or p-algorithm, the Shanks-Wynn, or e-algo- 
rithm, and the Pade method. In view of the results of Section 2, we are able to 
determine a priori when we can expect these algorithms to work. 

In Section 4, we prove Theorem 1.1 above. While the exact optimal rate of 
convergence of rational approximation is not known, we conjecture that, in the 
notation of (1.1), 

(1.13) sup inf sup A(x) - _ 
i(X) 

- e- 
geH,(U),1g~i,=1 [1ePN,_PN -1<X<1 (X) 

as N -s o (compare [5]). 
In Appendix A we study bounds on rational functions related to (1.5). The Jacobi 

theta functions turn out to be most convenient for this purpose, since, while it is 
possible to obtain similar results via the approximate integration of the function 
F(z, t) = t'- log I (z + t)/(z - t)I over 0 < t < so via the trapezoidal (resp. mid- 
ordinate) rule evaluated at the points ejh (resp. e(i- 1/2)h) j = 0, +1, +2,..., and 
using the concavity of this function (for fixed z e (0, oo)) as a function of t, it is 
possible to achieve more accurate error bounds via the theta functions, since it is 
possible to get exact bounds via known properties of the theta functions. However, 
while we use elliptic functions to obtain our results, the final results are independent 
of elliptic functions. 

In Appendix B we obtain accurate bounds on contour integrals encountered in the 
proofs of Section 2. 

We close this section with a few historical remarks. Stieltjes [27] seems to have 
been the first to identify classes of functions which may be represented exactly by 
infinite continued fraction expansions, and which may therefore be accurately 
approximated via truncated forms of continued fractions, i.e., rational functions. 
These functions are expressible in the form 

(1.14) F(z) d=t(dt) 

and the continued fraction expression obtainable via this representation converges 
uniformly in any closed region of the complex plane which does not contain the 
interval [a, b] (see [10]). Unfortunately, given a function F, it is not possible to easily 
check in applications whether or not F has a representation of the form (1.14). 

In [8] Gautschi gives an excellent summary of the use of rational functions in 
numerical analysis. 

It has long been suspected and verified in ad hoc cases that rational functions can 
do a better job of approximation than polynomials. That this is not in general the 
case for approximation on [-1,1] of functions that are analytic in the ellipse ER 

defined above was shown by Szabados [28]. Newman's result [15] (see also [16]) on 
the approximation of IxI on [-1,1] showed that rational functions are much better 
for approximating IxI than polynomials. The error bounds of the present paper all 
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have the O(exp[-cn7/2]) rate of convergence when used to approximate functions 
with singularities; this rate which is typical of rational and SINC function [23] 
approximation, was originally found by Newman in his rational approximation of 
lxi. Also of interest is the idea of Ganelius [7] for using the Green's function of a 
region of analyticity to obtain rational approximations; indeed, the rational func- 
tions of this paper have this property. For the case of rational approximation on a 
finite or semi-infinite interval, the poles of the rational functions of this paper lie on 
the real line outside of the interval, as is the case for best approximation of Stieltjes 
transforms-see Borwein [4]. 

2. Rational Approximation with Error Bounds. This section contains the main 
approximations theorems of the paper. While the proofs are complete, we shall use 
results derived in the appendices in order to shorten the proofs. 

As mentioned in the introduction, the rationals of this paper and SINC approxi- 
mations [23] share many similarities. We shall therefore use the notation of [23] in 
order to emphasize these similarities and also in order to facilitate the understand- 
ing of this paper. Let us therefore briefly review the notation of [23]. 

Let d be a positive number in the range 0 < d < 7r, let C denote the complex 
plane, and let regions Dd, i = 1, 2, 3, 4, and Dd be defined by 

(2.1) D = {z E C: Iarg(z)I<d} (seeFigure2.1); 

(2.2) D-{zE C: Iarg[(1 + z)/(1 - z) I < d} (seeFigure2.2); 

(2.3) D= { z E C: Iarg[sinh(z)J |< d} (see Figure 2.3); 

(2.4) D= {4 z = x + iy E C: y2/sin 2(d)-x 2/cos2(d) d 1) (see Figure 2.4); 

(2.5) Dd= {z E C: I Im(z) < d} (see Figure 2.5). 

Definition 2.1. Let D be a simply connected region in the complex plane C, let aD 

denote the boundary of D, let a and b (b = a) be points of a D, and let Dd be defined 
as in (2.5). Let 4 be a conformal map of D onto Dd, such that +(a) = -x, and 
+(b) = o. Let 4' = 41 denote the inverse map, and set 

(2.6) r = {+'(x): -x < x < o} 

Given 4, 4, a positive number h, and a number a which is either 0 or 1/2, we denote 
by zk =Zk( h) the set of points 

(2.7) Zk = 4((k + U)h), k = O. ?1, +2,.... 
Let us also define p by 

(2.8) p(z) = e+(Z). 

Let A(D) denote the family of all functions F that are analytic in D, and let B(D) 
denote the family of all F in A(D) such that 

(2.9) N(F,D)=f IF(z)dzl< oo, 
aD 

where the contour integral is defined by the limit 

(2.10) JIF(z) dz= inf f jF(z) dzj. 
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Given constants a, /3 and K, such that 0 < a < 1, 0 < /3 < 1, and K > 0, let us 
define classes of functions Ba,8(D) and BaX(D) by 

(2.11) Ba#i(D) = {FE A(D):IF(z) I Klp(z) ai + p(z) I z E D} 

and 

(2.12) Ba(D) = Ba,(D). 
In view of the above definition, we shall construct rational functions in the 

variable p(z), in order to carry out rational approximation of functions F E Ba(D), 
or F E Bax#(D) on F. 

Although it is most convenient to derive the SINC approximations [23] by first 
deriving them for the interval R = [-x, x], it turns out that it is simplest to derive 
the rationals of this paper for the interval [0, xe]. The other cases then follow 
similarly as for the case of SINC approximation, via the use of conformal maps. 

2.1. Rational Approximation in the Variable z on [0, xe]. Let us house some 
important concepts for this case in an example, in order to achieve consistency with 
results to follow involving approximation on other intervals. 

Example 2.1. If D = Di (see Eq. (2.1)), then 

(Z) = log(z), p(z) = z, 

(2.13) A(w) = ew, F = [0, X], Zk = e(k+a)h 

Ba (D ) = {FE A(D): IF(Z) |< KIZHI11 + z ? da z ED} D 

We set 
N-2a z - e(j~a)h z 

(2.14) j=-M z 
- 

e(j+a)h' B(z) = 1 z 

The difference between F and its rational approximant takes the form 
N-2a F(zj) B(x) 

(2.15) 1 (x) = F(x) - E ( -j) ,(z) x E (0, cx). 

By this method of approximation we can approximate functions such as 
x1/4(1 + X 2) -1/3 log(x). 

FIGURE 2.1. Equation (2.1) 
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We shall describe two typical situations of rational approximation in the variable 
z on the interval [0, oo]. The conditions in the first case (Assumption 2.1a below) are 
of theoretical interest, particularly when d = 7r/2, that is, when D' (see Eq. (2.1)) is 
the right halfplane, while the conditions in the second case are more amenable to 
applications. 

Assumption 2.1a. Given F analytic in D', let f E B(Dd), where for some p E (1, oo) 

(2.16) f (z) = [F(z)(1 + Z)2/Z] P/(, + Z)2 

and let IIFIIp < oo, where the norm is defined by 

(2.17) lIF|lp = lim - 1 | If(z)dzI 

Let M = N, and let B(z) and 'q(x) be defined by (2.14) and (2.15), respectively. 

THEOREM 2.1a. Let Assumption 2.1a be satisfied, let 0 < d S 7T/2, and define p' 
and h by 

(2.18) P' = p/(p - 1), h = 7r/[p'/(2N)1 

Then there exists a constant C depending only on p', such that for 0 < x < oo, 

(2.19) |XX CN 11(2 ) )exp (-d [ 2 Nlp] 1})1 |F 1p. 

Proof. It is readily seen that 1(x) in (2.15) also has the representation 

(2.20) W(x) = I (z) (z 2 'r i 8Ddi (z - x)B(z)~ 

Now, by Lemma A.2, the function f(z) defined in (2.14) satisfies 

(2.21) max I (z) | 6 expr d +el 

where e is defined in Eq. (A.20) of Appendix A. Hence, setting 

(2.22) A = expte], 

taking absolute values of each term in (2.20), applying Holder's inequality using 
(2.17), and then using (2.21) and (2.22), we get 

(2.23) Iq(xl)I6A1 
X 

I(x)lexp G(p dx)IIF 1p, 

where G( p', d, x) is defined in Eq. (B.1) of Appendix B. Hence, using Eq. (B.6), we 
get 

(2.24) l I i(x)JG(p dx)6A(p',d)10(x)I l/ ifO x61, if>1 
Next, using (A.35), and the fact that j(x - zj)/(x + zj)l < 1, we get 

(2.25) I (x) I f exp{ -T2/(2h)[1 - N1/2]) ifN1/2Z 
- N X N /ZN-2 

1 if x <, N 1/2ZN orif x > N 1/2 ZN-2a. 
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Hence, substituting (2.25) into (2.24), we get, for 0 < x < 00, 

1 I |I(x)IG(p ,dX) 

(2.26) A( d) (2exp{ -2/(2h)[1 - N -/2]4 if N 1/2ZN < X <, No-/ ZN-2a' 

[N 1/2z Ni otherwise. 

Noting that [N1/2Z-NI1/P < N1/(2p' )exp{-(N - a)h}, using (2.18) and combining 
with (2.23) yields (2.19). 

Assumption 2.1b. Let 0 < d < r/2, and for some constants a and /3, with 
0 < a < 1, 0 < / < 1, let Fbelongto Ba,,(Dk). 

THEOREM 2.1b. Let Assumption 2.1b be satisfied, let T = min(a, /l), 8 = max(a, /3), 
and corresponding to some positive integer n, let h be defined by 

(2.27) h =- (2Tn )1/2. 

If X = a, let M and N be defined by 

(2.28) M=n, N= [(al//3)n], 
where [u] denotes the greatest integer in u, while if X = /3, let M and N be defined by 

(2.29) M= [(/3/a)n], N n. 

Let zj, P(z), and B(z) be defined as in (2.14), and let Q(x) be defined as in (2.15). 
Then there exists a constant C such that for all x on (0, o0) 

(2.30) In (x) I< Cn /2 exp{ -d(2Tn )/2). 

Proof. By our notation, 7 is now also defined by (2.20). Taking absolute values, 
replacing IF(z)I by its bound as given in (2.13), and using Lemma A.3, we get 

(2.31) in(x)l<ACl + j0(x)|H(afldx)exp ( 

where the constant Al depends only on d, and where H(a, /3, d, x) is defined by 
(B.2). By Theorem B.2, we get 

(2.32) 1+x H(aoh 3d x)<A(aSd) (x if 0 <x1 <1 

We can now use Lemma A.3 to get a uniform bound on I0(x)I[min(xa, x-f] on 
[0, 0o0. Taking M112ZM < x < N-172ZN2, we have jf3(x)l bounded by the right- 
hand side of (A.34) and max[min(xa, xA)] = 1. On the other hand, if x s M1/2zM 
or else if x > N -1/2zN2U, then If3(x)I is bounded by 1, and 

(2.33) max[min(x, xP)] < n 8/2e e 

Substituting h defined by (2.27), the result (2.30) follows. 
2.2. Rational Approximation in the Variable p(z) on F. We now let z. be defined 

as in (2.7), and for some positive integers M and N, and a = 0 or 1/2, we set 
N-2a Pw ( 0 

(2.34) 0(w) = p(w) - e(j+u)h 
J=-M P(w) +) . 

(2.35) B(w)= p(W) f0(w). 1 + P(w) 
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Assumption 2.2a. Let Definition 2.1 be valid, let g be analytic in D, and for some p 
in the range 1 < p < oc, let G be defined by 

(2.36) G(w) = p(w) ] 

Let G satisfy the inequality ugH < oo, where 

(2.37) Cci nfD [AJIG(w)l IP(w)4/(w)dwlj 

Assumption 2.2b. Let g be analytic in D, and for all w in D, let 

(2.38) Ig(w) I< C11P(W) |l1l + p(w) 1-A 

where C1, a, and /3 are positive constants, with 0 < a < 1 and 0 < / < 1. 
Proceeding as in the preceding section, we let B(w) be defined by (2.35), and we 

set 

(2.39) ~ q(u) = B: (u D g(w) p w)4/~(w) dw 
(2.39) rl( ) 22?Ti aD [p(w) - p(u)]B(w) 

to get 

(2.40) 'q(u) = g(u) 
N-2agz e "'0(zj)B(u) 

() =M [p(u)- e(J+a)h] B'(zj) 

THEOREM 2.2a. Let Assumption 2.2a be satisfied, let 0 < d < ?T/2, let M = N in 
(2.40), and let zj (for a = 0 or 1/2) and r be defined by Definition 2.1. If h is 
selected by the expression 

(2.41) h = ?T [ p /(2N)] 

where p' = p/( p - 1), then there exists a constant C depending only on p', such that 
for all x on F, 

(2.42) | (x) I < CN1/(2p')exp{ -d (2N/p')12} 12g HO 

Proof. If we set w = +(z) and u = +(x) in (2.39), we get (2.20), with g('(z)) = 

f(z). The right-hand side of (2.40) reduces similarly to the right-hand side of (2.15). 
Hence the proof is identical to the proof of Theorem 2.1a. 

The proof of the following theorem is also similar to the proof of Theorem 2.1b, in 
view of the above remarks. 

THEOREM 2.2b. Let Assumption 2.2b be satisfied, and let 0 <d < ?T/2. Let 
T = min(a, /3), 8 = max(a, /3), and corresponding to a positive integer n, let h be 
selected by the formula 

(2.43) h = 7TI(2Tn) 

If X = a, let M and N be defined by 

(2.44) M= n, N= [(a//3)n], 

while if X = /3, let M and N be defined by 

(2.45) M= [(P//a)n], N= n. 
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Let q(u) be defined as in (2.40). Then there exists a constant C depending only on a, 
/3, and d, such that for all u on F, 

(2.46) J i( u) I < Cn6/2 exp { -d (2Trn)l}). 
Example 2.2: SINC Approximation [23]. Let the assumptions of Theorem 2.2b be 

satisfied, and take / = a, a = 0. Set 

(2.47) h = [ 7zdl(aN)] 1/2, S( J h ) o ( x) = sin{f (vlrh) )[x 
- 

jh]} 

Then there exists a constant A, depending only on a and C1, such that for all u E F, 
N 

(2.48) g(u) - E g(zj)S(j, h)o ep(u) < AN1/2exp{f-(,gdaN)l/2}. 
1=-N 

Notice that the bound (2.48) is sharper than the corresponding one in (2.46) above, 
for 0 < d < a/2, but it reduces essentially to the same one for the case when 
d= v/2. 

FIGURE 2.2. Equation (2.2) 

Example 2.3: Approximation on [-1, 1]. If D = D2 (see Eq. (2.2)), then 

(z) =log1 
z 

P(Z) =1 -z 

(2.49) Ap(w) = eW + I [r = [-1 1] Zk= e(k+u)h - 

B"a(De2) + 1FE A=(D2): 1F(z)I< K11 + zej?ll 1-N z E- Dd2l 

In this case, 
N-2a w - Z 

(2.50) B(w) = (1- w2) H I _ wz ' 

and the difference between g and its rational approximation takes the form 

(2.51) q(U) = g(U) NE-U g(zj)B(u) 
J=-M (u - zj)B'(zj) 
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(i) If g E Ba (D 2), if h is selected according to (2.43), and if M and N are 
selected according to (2.44)-(2.45), then q defined in (2.51) is bounded by the 
right-hand side of (2.46). 

(ii) Let U = D /2 denote the unit disc in the complex plane, let p E (0, xc), let g 
be analytic in U, so that G defined by G(w) = g(w)/(1 - w2) is in the Hardy space 
Hp(U), i.e., such that 

(2.52) HA = lim IJ2 IG(rei ) Pdo <00, 

and let p' = p/(p - 1), h = iT [p'/(2N)]1/2, let zj be defined by (2.49) and B(w) 
by (2.50), in which we take M = N. Then q defined by (2.51), in which we also take 
M = N, satisfies the inequality 

(2.53) (a) CN12p )exp{-g [NI(2p')]1/2I lgI, 

where C is a constant depending only on p'. Notice that in this case the ra- 
tionals in p(u) are just rationals in u. Some typical examples include g(u)= 
(1 -u2)2/3(1 + u2)-1/2, (1 + u)-a(1 -u) log(1 - u), etc. 

I id 

d. 

FIGURE 2.3. Equation (2.3) 

Example 2.4: Approximation of Decaying Oscillatory Functions on [0, 0o]. Whereas 
the approximation scheme of Example 2.1 is well suited for functions that are 
analytic in a sector and have algebraic decay to zero at 0 and at so, the scheme of 
this example is suited for functions that are analytic and bounded only in the strip 
D3 This situation occurs frequently for the case of Fourier transforms, which may 
decay to zero at an algebraic rate at 0 and (ideally) at an exponential and possibly 
also oscillatory rate at so. In this case, 

+(z) = log[sinh(z)]([12]), p(z) = sinh(z), 

(w)= log[ew + (1 + e2w)], 

(2.54) Zk = log[e(k?U)h + +(1 + e2(k?)h) ] 
B~ais (D 3) = {Ef A(Dd3): I F(z) I < KI z I if Re(z) < 1; 
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We set 

sinh(w) N-2u sinh(w) - e (j?U)h 

(2.55) B(w) = 1 + sinh(w) l=-M sinh(w) +)e 

If g E Bfi(D3), and if h is selected by the formula (2.43), then the difference 

(2.56) qu)g )-N-2a g (z1) (1 + e 2(j?U)h) B(u) (2.56) 1'(u) = g(u) - L: ( a/( f )hXta 

j=-M [sinh(u) -ej IBzj 

is bounded on [0, oc] by the right-hand side of (2.46). In this case, the rationals in the 
variable p(u) = sinh(u) are just rationals in eu. A typical example of a function g is 
g(u) = U1/4[(U - 100)2 + 1]1/2cos(2u)e-u. 

Example 2.5: Rational Approximation on [-oo, -oo]; The Algebraically Decaying 
Case. If D = D4 (see Eq. (2.4)) then 

(z) =log[z + (1+z2)], p(z) =z + V(1-+ z2), 

+(w) = sinh(w), zj = sinh[(j + a)h], F = [-oa, x], 

Ba f(Dd) = {ganalyticinDd:lg(w)l < C111 -wI- if Re(w) < 0; 

lg(w)| < C111 + wPO if Re(w)> 0}, 
(2.57) 

8B(1 
+ w2) + w N-2a w + (1 + w2)- +a) 

H 
1+ (1 + W2) + W j=-M W + (1 + W2) + e( )h 

N-2a g(zj)e(j+?)hsech{(j + a)h}B(u) 
'q~u)= g() - 

ffi + U~2)~ (j+u)hlB() 
j=-M U + (1 - B(z) 

If g E Baf (D4), and if h is selected by (2.43) then 7q(u) is bounded on [-oo, o] by 
the right-hand side of (2.46). Notice that we now have rationals in the variable 
u+ /(1?u2). 

Some important cases from applications include g(u) = (1 + U2)-1/3 log(1 + u2), 
exp{-u2 }, exp{ia( (u2 + b2) }/ V(u2 + b2) (Im(a) > 0, b > 0), secha(u). We re- 
mark also, that by a slightly different choice of h than that described in Eq. (2.43) 
(e.g., take M = N, h = (1/N) log(N) in Theorem 2.2b) we can achieve an 

O [exp { -cN/log( N ) } ] (c > 0) 

rate of convergence to zero of the error of (2N + 1)-point rational approximation 
for the case of the last three examples. For example, after replacing tanh(u) by x in 
secha(u), we get an even better approximation to (1 - x2)a on [-1,1] than by 
polynomial approximation having error O(N-2a), or by the rational approximation 
method of Example 2.2 having an O(Na/2exp{ -(,/2)Nl/2 } error. 

Example 2.6: Rational Approximation on [-oo, oc]; Exponentially Decaying Case. 
If D = Dd (see Eq. (2.5)), then 

+(Z) = Z. p(z) = ez, 

(2.58) +(w) = w, r = [-al, ec], Zk = (k + a)h, 

Ba a (Dd) = { F E A(Dd): I F(z) I < Ke - alzl z E Dd}. 
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FIGURE 2.4. Equation (2.4) 

'Id 

I/0 

-id 

FIGURE 2.5. Equation (2.5) 

The functions B(w) and q(u) take the form 

B(w) = le N-2a ew - e(j+a)h 

B(W) H g (jo)h ( 

+ ew j=-M ew + 
(2.59) N-2ar g(z.)e(J'+a)h B(u) 

'q(u)=g(u)- e - e 
(jic)h)B(1 
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If g E Bfi(Dd), and if h is selected by the formula (2.43), then 'q is bounded on 
[-oo, oc] by the right-hand side of (2.46). Notice that the rationals are now rationals 
in eu. Examples include g(u) = exp{-u2}, sech{u} log(1 + 2u2)(2u + 1)/(1 + u2), 
etc. 

3. Implications and Applications. In this section, we study the connection of the 
results of the previous section with the Thiele algorithm, the epsilon algorithm, and 
the Pade method. 

3.1. The Thiele Algorithm. The Thiele, or p-algorithm for interpolating f at m + 1 
distinct points xo, x, ... ., Xm is described as follows. Define p/ by 

PO t(xi), j = 0,1, ... ,m, 

(3.1) Pi = 1P , j = 0 =13...,. -,m 

pJ~ X ~i ] + Pi+ J = 
0,1, ... i 

Then the rational function r(x) which interpolates the data {x;, f(xj)}Lm 0 is given 
by the continued fraction representation 

(3.2) r(x) = po+ 
X 

+ i + O 0 0 0 0 ~~~~0 0 
Pi P2 PO Pm Pm-2 

The function r(x) has the form 
(3.3) r (x) = & (x)lq,,(x) 

if m = 2n, where Pn and qn are polynomials of degree n in x, and it has the form 
(3.4) r(x) = pn+?(x)/q*(x) 

if m = 2n + 1. Furthermore, if m = 2n, then 

P 2n + C1Xn-1 + +C 

That is, 

(3.6) P2n= lim r(x), 
X -400c 

so that the algorithm provides an excellent method carrying out analytic continua- 
tion. 

For example, if f is analytic and bounded in the region Di of Eq. (2.1) and if f is 
of class Lip,, (a > 0) on [xO, oo], where xO > 0, then we may effectively use the 
Thiele algorithm to approximate f (oo) via the use of a few values of f (x), for finite 
x. Indeed, this has been done recently in an ultrasonic tomography algorithm [26]. 

3.2. Evaluation of the Rationals of the Previous Section via the Thiele Algorithm. Let 
P,1 denote the family of all polynomials of degree < n, and consider the evaluation of 
the rational function [29] 
( 3.7) r ( x) = Pn ( x )qn + o ( x) 
for p,1 E PI,, q,10 E Pi + a, where a = 0 or 1, and such that 

r(x2k) = f (X2k), k = 0,, .., n, 
(3.8) r(x2k-1) = mc, k = 1 2,..., n + a. 
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Then 

(3.9) p(x) = 1/r(x) 
can be evaluated via the Thiele algorithm, using the 2n + 1 + a values P(Xk)= 

l/r(xk), k = 0,1,.. .,2n + 1 + a. Equation (3.9) then yields r(x) = 1l/p(x). In 
general, there seems to be no guarantee that the p-algorithm will always work (see, 
however, the excellent altered algorithm of Graves-Morris [9]); however, interlacing 
the zero and nonzero values of p in the above fashion has worked, in our experience. 
Since all of the poles of r(x) have been predetermined, there are no unwanted poles. 

For example, let us consider the evaluation of the rational function in (2.51). Since 
Zo = 0, B(x) = P2N+3(X)/q2N(X), where P2N+3 E P2N+3, q2N E P2N- Hence r(x) 

= P2N+2(x)q2N(x), and it has (1 - x2) as a factor. Hence 

(3.10) pWx = 
12N- XT_ EP2N(X) 
r(x) T2N(X) P2NW 2N E2N 

is completely determined by the 4N + 1 values 

1 2 

(X2kP(X2k)) Z-N+k N ( k =0, 1,...,2N, 

(3.11) f 
(1/N k -1, 0), k=1,2, ...,~N, 

(X2k-1, P(X2k-1)) = (1/ZN O) k-N + l.2N, 

and may thus be evaluated via the Thiele algorithm, as above. The rational function 
r(x) may then be computed via (3.10), i.e., 

r(x) = (1 - X2)/p(X). 

3.3. The e-Algorithm and the Pade Approximation. The e-algorithm [21], [32] is 
described as follows. Given a sequence of m + 1 numbers Sj, j = 0,1, .. ., m, define 
EJ by 

Ej= S,, . , 

(3.12) e' E i 

- 1 ~~+1 j= 'L.. ' 
I Ej+1 + 

i-2' = 2 +3..., Im . 

The numbers ej may be used to either predict the limiting value of a function, or to 
evaluate Pade approximations [31]. 

For example, if 
A /Lkl 

(3.13) S(x) = L + , e 'k 
k dkIX', 

k=O 1=0 

if Sj=S(jh),h 0,andif 

(3.14) M= E Ik 
k=O 

then 

(3.15) E0 = L. 
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On the other hand, if SJ is defined by 

(3.16) S= CT 
i=O 

then 82k yields [17] the Padd approximation 

(3.17) n2k = Pn+k-1(T)1qk(T) 

The results of Section 2 of this paper together with the representations (3.13) or 
(3.16) tell us when we may expect the approximations (3.15) or (3.17) to be accurate, 
when applied to a function f. 

For example, f (x) - L (e.g., L = f (x)) may be assumed to satisfy the conditions 
of Theorem 2.1a, provided, e.g., that 

(3.18) |CkX |I =O(e k), a > 0. 

Hence in the case when (3.18) is satisfied, we may expect (3.17) to converge rapidly 
to f(0o) = EY=OCkXk as n -* x. 

4. A Lower Bound on the Error of Best Rational Approximation. Let U denote the 
unit disc in the complex plane, i.e., U = D /2 in the notation of Eq. (2.2). Let g 
satisfy the conditions of Theorem 2.1a. Then G defined as in (2.52) is in Hp(U), so 
that (2.52) is satisfied. Let S denote the family of all functions G such that the 
integral on the right-hand side of (2.52) is at most 1. Then by Andersson [2] we have 

2N 1/2 inf P2N(U) 1 d (4.1) C, exp -IT( 
< inf sup I G(u) - P() du| 

P P2J pN q2N+l G E S -1 q2N?1(u) 

where p' = p/(p - 1), where C1 is a positive constant depending only on p, and 
where P2N and q2N+l denote polynomials of degree 2N and 2N + 1, respectively. 

Now if q7(u) is the quantity in (2.51), then the expression in square brackets on 
the right-hand side of (4.1) is just q (u)/(1 - u2). Hence 

(4.2) Ciexp(-T(P') j < -u)c 1 

We now split the integral on the right-hand side into an integral over (-3,8), 
0 < 8 < 1, plus an integral over [-1, 1] - [-8, 8]. Then 

(4.3) | q(-) udu < max () ( Is dt 
=117q11 >O21lg[1 +] 

-8 (_U2) - U<I - t2) = ~2o -3]' 

while from (2.24), after transformation from (0, oo) to (-1, 1), to get Iq(u)I < 
C3(1 - U2)1/p, we have 

(4.4) j | F1 (U) dU I 
(1 _ U2)-IIP'dU <C2pu-du 

[-1,1]-(-3,3) (1 - U2) C2J C2p(I - 

where C2 is a constant depending only on p'. 
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Hence, by (4.2), (4.3), and (4.4), we get 

(45) ))) ~~1 [,f[ N 1/2~ 

2log{(l + 8)/(1 - 8)} [LC exP-IT p j - C2 '(1 
- 

8)l/p'] 

Taking 1 - 8 = e - N, and combining with the results of Example 2.3, we find that 
there exists an integer NO, such that if N > NO, then there are constants C3 and C4 

such that 

C3N1exp(-(T ,)} ) < sup inf sup g(u) P2N?2(U) 
(4.6) GES P2N+2,q2N+1 -1<U<l q2N+1(u) 

< C4 N1/(2P )exp(s N[2N']}. 

These inequalities show that while the exact lower bound on the left-hand side of 
(4.6) is not known, the results of this paper are in the right "ballpark" with respect 
to their accuracy. We mention also, that the approximations of this paper are linear, 
and as was shown in a recent very interesting paper [5], the bounds obtained in this 
paper are in fact optimal, in the sense that the constants multiplying N1/2 in the 
exponents of the bounds cannot be replaced by a smaller number. 

In view of the above, we conclude with a problem: Given g analytic in U, 
G e Hp(U), where G(w) = g(w)/(1 - w2), and given N, can a rational approxima- 
tion pN/qN which is linear in g be as accurate as the best rational approximation to 
g of the form pl/q,? Here PN and q. are polynomials of degree at most N. 

Appendix A: Blaschke Product Estimates. We consider rational interpolation at the 
points e- j, = O 0 1, . . ., + N. It is then natural to start with the product 

(A.1) 4(DZ) =N (z + q 2) q = e-h/2 

Unfortunately, this product does not have a limit as N -X oo, since the product 
changes sign with N as N increases. However, the alternate form 

Z - N 1q2j (z +1/z) +q4' 
(A.2) ('DN(z) 1 H q2'( /z 

z + /-1 1 + q (Z + / ) 

has the same zeros and poles as I, and moreover, 0 converges as N -X cc, to 

(A.3) 4D(z, q2) = z -10 1 - q 2j(Z+1/z) +q41 
Z + 1 =1 1 + q2'(z + 1/z) + q 

For purposes of interpolating at the points q2j-1 = e-(2j-l)h/2 we shall also require 
the function 

1- q2'-l(z + 1/z) + q4J-2 
(A.4) 'I(z, q2) = H 

q2j'(z + 1/Z) + q4j-2* 
j-1i +qq 



244 FRANK STENGER 

Let us now relate the functions 1D and 'I to the Jacobi theta functions, using the 
definitions given in [14, Eqs. (16.37.1) to (16.37.4)]. To this end, we let 0 < k < 1, 
and set 

U = U(W) = jw[(1 - t2)(1 - k2t2)]t/2 dt w = sn[u; k], 

K = K(k) = u(l) sn[K; k] = 1, v = Tu/(2K), 

(A.S) cn[ u; k ] = (I - sn 2[U; k ])1/2, - K < u < K 

k, = (1 - k2)l/2, K' = K(kj) 
q = e- h/2 e- efK'/K q1 = e - K/KK' 

Then, we have 

sin(v) H [1 - 2q 2icos(2v) + q4j] - 1 6 (u) 
j=1 6j 

cos(v) Hl [1 + 2q2jcos(2v) + q4j] =[ k ] C(U) 

(A.6) j=1 16q 1J1 

H [1 + 2q 2jcos(2v) + q 4 ] = 2 2 Od(U), 
j=1 -kk1J 

H1 [1 - 2q2j-1cos(2v) + q4j-2] = [16 kl/ oH (U) 
j=1k2 

where [14, Eq. (16.36.3)] 

(A.7) pq[u; k] = Op(u)/Oq(u). 

Hence, if we set 

(A.8) u = -(iK/r) log(z), v = -(i/2) log(z), 

then (A.2) and the first two equations of (A.6) (resp. (A.3) and the second two 
equations of (A.6)) yield 

(A.9) D(z, q2) = -ik'12sc[-i(K1,r) log(z);k], 

(A.10) T(z, q2) = k1/2nd [ -i(K/") log(z); k], 

and finally, via the imaginary transformation of [14, Eq. (16.20)], we get 

(A.11) D(z, q2) = k1/2sn[(K/7T) log(z); kj], 

(A.12) 4I(z, q2) = kll2cd[(K/T) log(z); k]. 

Both functions sn[u; k] and cd[u; k] map R onto [-1, 1], and therefore 

(A.13) sup FD (z,q2)1= sup 4T(z,q2)1= k1/2 
O<z< 00 O<z< 00 
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LEMMA A.1. Let 4D(z, q 2) and P(z, q 2) be defined by (A.3) and (A.4), respectively. 
Then, for all z > 0, 

(A.14) (D (z, q2) < k 1/2 < 2 exp -17 2/(2h)], 

(A. 15) 1*(z, q') j k~l/ < 2exp[-7T2/(2h)]. 

Proof. The first inequalities (A.14) and (A.15) follow from (A.13). Next, from 
(A.6) and (A.7) we have 

(A.16) cd[O; k] = 1- 2q"" l [1+ q2ji ]2 

But since 0 < q < 1, we have [1 + q2j]/[1 + q2'1] < 1, and hence (A.16) implies 
that 

(A.17) 1 < 2qIkl 

Replacing k by k1 in (A.17), and using the identity log(q) log(qj) = r2, we get the 
right-hand sides of (A.14) and (A.15). 

LEMMA A.2. Let 0 < d < 7, let z = tei', where t > 0, and where IOI = d. Then, 
with a either 0 or 1/2, T = te-?h, 

(A.18) , log e(1d)h - Z h [2 ] 

where 

(A.19) =2 sinh{(( /h)( -2d/#r)} cos{27jlog(T)} 
j-1 cosh (f 7 /h } 

In particular, 

e - 2,fdlh e -2f 2(,f - d )lh 
(A.20) I<I < E - eE2fd/h 1 - 

Proof. Replacing z by ze-?h in (A.18) shows that we may consider the case of 
a = 0 without loss of generality. Let us define rn, a contour C and arcs C1, 
j= 1,...,4,by 

4 

(A.21) C = U Cj, rn = e(n+l/2)h, n = 1,2,..., 
j-1 

where 

C1 = ( w e C: w = rnleil', d - rr < v < d } 

(A.22) C2 = (w e C: w = uei(d 9), rn < u < r,1}, 

C3 = { w e C: w = rne'"' d - < v < d }, 

C4 = {w E C: w = ueid, rn-j < u < rn}. 
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We also set 

F(z,w)= logj 

Tj=1 F(z, w)(1/w) dw 
n , 2si Jctan{( (,rh) log(w)} 

(A.23) n= 

4 

Tn= ET, Rn=Re{Tn}, 
j=1 

4 

RJ= lim RJ,. R = lim Rn E RJ. 
n - oo .- 0? j00 

We remark that while Tn does not converge as n -x o, Rn does. 
The denominator, tan{(v/h) log(w)} can be handled just as in [25]. We thus find 

that 

_ d-r 1[z+ W] 
- 27i d {ZT + log z w ]w=r,71 J-Jtanh hIu dv, 

T'=R'=- -j tanh{TZI'}dv 

7r h 1 + e- 2,d/h 1 
(A.24) = - d - 2 log[1 + 

T_ 1 't 2dld2 
- 2'7T~ 'r -7k + 1 2 7ri Ir )[ 21L[r--d+ilog(t)]/h U 

+ 2j (i) log u+t [1 + 27[7r-d?1log(u)Vh - 

| R2 = im [-__ 27r[7r-(d+log(u)]/h -1 ]-2~i U lo t U- 

2 Re[ 7Ti |0 log U - t | e27[7-duilog(u)]/h ] U 2 ReLM (1log uuct (1/utdd 

1 r7i dr [l-z/w1 ] ((-)tan v }i 

-0 asn-> s, 
(A.26) R T4 1 'r( i)(Ri)[I + 2f[d-ilog(u)]/h - d ] g 

2I--j + 2 2 T -1 
1 fr' u+t r12 d 

2 | og t(-i) [1 - d -ilog(u)]/h - 1]u 

P14= i [ 2'7T J 1 e2 [d-iog(u)]/h-1 2 l u - t | u 
(A.26){ R4= i+0 log U - t d-ou) ] 

+Rri oU+ t (2/uddu 

[ lM J-mg (1-u) du- 1 J0 U+td 
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Next, taking residues of the contour integral T1 at the zeros of tan{Q7T/h)log(w)}, 
then taking the real part, and letting n -x o, we get 

h 00 ejh+ Z 
(A.28) R=- log eih - 

j 00 

Similarly, summing R1 to R4 in (A.24) to (A.27), we get 

2 2 h [ e - 2,l-d+ i log(t)]/h J 
R - 2-d-2 Relog 1- ~2,ff[ - log(t)]lh 

(A.29) +Re Jlog K 
u 2t4-eIog(u)]/ - 1 

e 2qfT[7T-d+ilog(u)]/h 1U 

The last integral in (A.29) may be evaluated via term-by-term integration of the 
expansion of the terms in brackets in powers of exp{ ? (27ri/h) log(u)}, using the 
formula 

(A.30) f log |+ t _eIC og(U) du 7 tanh{____/2_ 
U- t1cgu) - Or(cl2) 

which is valid for c real, and which can in turn be obtained by expansion of 
logl(u + t)/(u - t)l in powers of u/t for u < t, and in powers of t/u for u > t, 
and then carrying out termwise integration. Finally, the first log term on the 
right-hand side of (A.29) can also be expanded using the expansion of log{1 - w} in 
powers of w for jwI < 1. Combining these expansions, we get (A.18). 

The inequality (A.20) follows if we note that each coefficient of cos{27Tj log(T)} in 
(A.19) has the same sign. Taking absolute values, replacing the cosine term by 1, and 
then replacing coshf T 2j/h } by ?exp{r 2j/h}, we can sum the result explicitly, to 
get (A.20). 

LEMMA A.3. Let z = te'0, where t = Izi, 11 = d, and let e be defined as in (A.20). 
Let M and N be positive integers, and set 

N-2a z+e(~~ 
(A.31) P = z + e(J?)h| 

j=-M z - e(~~ 

(i) If 0 < d < 7T/2, then 

(A.32) P < exp{ 7T(7T/2 - d)/h + e} 

(ii) If 7T/2 < d < 7T, if 

(A.33) Ml/2e - Mh < t < N 12e Nh 

and if Q = exp{e + ['7r2/(4h)][M 1/2 + N-1/2]}, then 

(A.34) Q-1exp{'7r('r/2 - d)/h} < P < Qexp{ 7T(7T/2 - d)/h). 

(iii) If d = r, and if Ml/2e-Mh < t < N-1/2eNh , then 

(A.35) P < 2exp{-[7T 2/(2h)] [1 - (M-1/2 + N -1/2 )/2]}. 

Proof. Let us consider the case of a = 0; the case of a = 1/2 is similar. In this 
case 

(A.36) P = 14(z, e h) IW(-, -N -1)W(M + 1, o), 
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where 

(A.37) W(m,n)= 11 -z-e jh/Iz+eihI. 
J=rn 

(i) If d < 7T/2, then for a > 0, we have jz - al/lIz + al < 1; hence Lemma A.3 
follows from (A.18) and (A.20). 

(ii) If 7r/2 S d < 7T, then 
00 2 00 

log{W(M+ 1, )} mReO 2m + I E (e / 

00 2 00 

< E 2m I E 2(e + 1 
l 

(e~h/z 
"1=O i=M+= 

00 2 2+ 

(=E 2 (e-(M+1/2)h/t)2mle-(m+1/2)h/[1 _ e-(2m+l)h] 

(A.38) "1=? 
m 

< , 2 e - (M + 1/2)h/t I2ml/h 
rn=O (2m + 1)2 

00 2 
< 2a + 1)2 (M-'/2) h 

n1=o (2m + 1) 

(T 2/4) M-1/2/h, 

where, in the first inequality, we replaced Re z-2m-1 by t - 2m -; in the second, we 
replaced exp{-(m + 1/2)h}/[1 - exp{-(2m + 1)h}] by 1/[(2m + 1)h]; in the 
third we replaced t by Ml/2e(M+?l/2)h; and finally, we used the fact that M > 1 
and the identity =0 2/(2m + 1)2 = '7T2/4. 

Similarly, we also have 

(A.39) log( W(N + 1, oo) } < (7T2 /4) N -1/21h. 

(iii) In this case we use (A.14) and then proceed as in the proof of (ii) above. 

Appendix B: Estimates of Integrals. We shall estimate the integral 

(B.1) 

G(p',d'X) 

= z 

- 

+ 

] 
for 1 < p' < xo, 0 < x < oo, and 0 < d < 7T/2, and where D' is defined in Eq. (2.1) 
and where aDd denotes the boundary of D'. We shall also estimate the integral 

(B.2) H(a,f, d,x) = z I`111 + zlaf-z - xi-11dz| 2 -r 
+Dd- z x Iz 

forO < a < 1,0 < < 1,0 < x < oo,andO < d < 7T/2. 
Let F(a, b; c; z) denote the usual hypergeometric function, which is defined for 

Iz < I by the series 

(B.3) F(a b; c; z) = 
00 

(al)n(b)n n Y, 
()n! 

and for Re c > Re b > 0 by the integral 
F(a, b; c; z) 

(B .4) 221(c) f 
2b-1(l + w2) a [1 +(I-z )w2] dw. (B.4) ~F(b)P(c - b) J w ( 2a[ ( ~2aw 
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THEOREM B.1. Let G(p', d, x) be defined by (B.1), and set 

2-1/2 sec(d/2)[P((p' - i)/2)7T-V/2/r(p/2)])/P' 

(B.5) A ( p', d)= 21/P'cot(d/2) if 1 < p' < 2, 

2-'/P'sec2/P' (d/2) if p' > 2. 

Then 

(B.6) G ( pi, d, x ) < A (p', d )(xifO<x 1 
X /' if 1 ~X. 

Proof. (i) If d = rr/2, we set 

(B.7) G(x) = [G( p', rr/2, x)] P'. 

Then by Eqs. (B.1) and (2.1) we have 

G(x) = 1-f (t2 + 1)P'/2-1(t2 + X2)-P'/2 dt 

(B.8)X-t0 
. 

j 
(t2 + 1)p'12-1(1 + t2/x2)-P'/2dt 

i.e., 

(B.9) G(x) = (x-P'/2)F( p'/2,1/2; 1; 1-11X2)9 

where we have used (B.4) and the identity r(1/2) = '7T12. Next, using [14, Eqs. 
(15.3.3) and (15.3.5)], we get the expressions 

(B.10) G(x) = 1/(2x)F(1 -p'/2, 1/2; 1; 1-11X2)9 

(B.11) G(x) = (xl-P'/2)F(1 - p'/2, 1/2; 1; 1-X2) 

where the last equality could also have been obtained upon replacing t by xt in 
(B.8), yielding 

(B.12)~~~~ xl-P' 00[ + X 2t 2 ]p'12 -1 dt (B.12) G(x) = X( 
[?-2P''d 

'7To 1? t2J 1 + t 2 

Now for O < x < 1, 

r1 + Xt2 P'/2-1 + t2 )l -P'/2 if 1 <p' < 2, 
(B. 13) I I 2< fp > 

so that, for this range of x, we get 

F(l -p'/2, 1/2;1;1-X2) 

(B.14) 7T 1/2r((p - 1)/2)/r(p'/2) if 1 < p' < 2, 
1 if p' > 2. 

Hence, combining this inequality with (B.11) we get (B.6) for 0 < x < 1. Equation 
(B.10) may be bounded similarly, to yield (B.6) for x > 1. 

(ii) If 0 < d < v/2, we have, by (B.1) and the definition (2.1) of D', that 

(B.15) [G(p',d,x)]' = It +eid P It -exeidI P dt. 
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Since t and x are both positive, we have 
2 2 2 

(B.16) It-xe-id = t2 +X - 2xtcos(d) 

t2 + x2 - (t2 + x2) cos(d) = (t2 + x2)2sin2(d/2) 
and also, since 0 < d 7T/29 

(B.17) t2 + 1 , t2 + 1 + 2t cos(d) = It + e -id 1 

< t2 + 1 +(t2 + 1)cos(d) = (t2 + 1)2cos2(d/2). 
Hence, if 1 < p' < 2, then by (B.8) 

[G~pg dx)] 
' 

<,1 00(t2 + 1)p'12l(t2 + X2)-p'/2dt 

[ [21/2 sin(d/2)]P' 
(B.18) G (x) 

[21/2 sin( d/2)] 
P 

whereas, if p' > 2, then 

(B.19) [G (p'9 d9 x)] P < [~ 2 (/)] p G(x), 
[21/2sin(d/2)] P' 

where G(x) is defined in (B.7). The inequality (B.6) for arbitrary d in the range 
0 < d < 7T/2 now follows from (B.18), (B.19), and (B.14). 

THEOREM B.2. Let H(a, fi d, x) be defined by (B.2), and set 

Af (a,/d)- F(a/2) 
2 "2'7T sin( d/2) 

(B.20) (B.20) 
~ ~ ~~ S r(fl12)1I7((a + ,B)/2) if 0, + ,B < 1,9 

r((i- a)/2) T-1/2[21/2cos(d/2)]l a1 if a + B >1. 

Then 

(B.21) H(a g d, x) < A(a /i d){X-, if 0< x > 1, 

Proof. It is convenient to set 

(B.22) H(x) = H(a, ,fg 7T/2, x). 

(i) If d = 7T/2, then by Eqs. (B.2) and (2.1), we have 

( ) H(x) = 7j | ta-l(l + t2)(1-' -j)/2(t2 + X2)-1/2dt 

(B.23) 7T0 

= 
X j 

ta-l(l + t2)(l-a-j)/2(j + t2/X2)-1/2dt, 

i.e., by (B.4), 

(B.24) H(x) = cx'-F(1/2, a/2; (a + ,B)/2; 1 -1/X2), 

where 

(B.25) c 
IF ( a/2) F( //2) (B.25) C 

~~~~27T]F((a + 3),/2)~ 
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Next, applying Eqs. (15.3.5) of [14] to (B.24), we get the two expressions 

(B.26) H(x) =cx-F(#//2, (a? + 1)/2; (a + /)/2; 1- l/x2) 

and 

(B.27) H(x) =cxa-lF(a/2, (a + / 1)/2; (a + /3)/2; 1 -x2). 

Using (B.27) and (B.4) we may also write (B.27) in the form 

X a - r 1 2+ 22 (1 - a-)/2 
(B.28) H(x) = X 00 + W 2 Jw al(1 + w2) (a?P )/2 dW. 

Now, if 0 < x < 1, we have 
r ? 2x2 (1- fl/ 1 if a, + /3 1, 

(B.29) [ l + W2 ] (1 + W2)(?a+? -1)/2 if + > 

Hence, for this range of x, we substitute the right-hand side of (B.29) into (B.28), to 
get 

(B.30) H(x) < X lF(a/2)f P(/-/22)P((a ?1)/2) if a + 30 1. 

This inequality is just (B.21) for the case of d = w7/2, 0 < x < 1. The case of 
d = 7T/2 and x > 1 follows by bounding the hypergeometric function in (B.26), 
which is just the same as that in (B.27), after interchanging a and 18 and replacing x 
by 1/x. 

(ii) In the case of 0 < d < 7T/2, we have 

(B.31) H(a,3, d,x) = - t-l't2 + 2tcos(d) + 

x [t2 + 2xtcos(d) + x2]-1/2dt, 

and we can now use the estimates (B.16) and (B.17) to get (B.20)-(B.21). 
This completes the proof. 
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